Math 217

Agenda 6 – Chapter 5 – Sampling Distributions
1. Parameters and statistics

a. A parameter is a number that describes the entire population of interest.  A [parameter is a fixed number, but in practice we do not know its value.

b. A statistic is a number that describes a sample of individuals from a larger population.  The value of a statistic can be calculated from the sample data, but it can change from sample to sample.  We often use a statistic to estimate an unknown parameter.

c. The value of a statistic varies from sample to sample in repeated random sampling.  This fact is called sampling variability.

d. A statistic from a random sample or randomized experiment is a type of random variable.  The probability distribution of the statistic is called its sampling distribution.

e. The population distribution of a variable is the distribution of its values for all members of the population.  The population distribution is also the sampling distribution for random samples of size n = 1.
2. Review of binomial distributions.

a. Four requirements for a random variable to be exactly binomial (p.335).

b. If X = B(n, p), that is, if X is binomial with parameters n and p, then... 


i. X has mean µ = np and standard deviation σ = 
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ii. When n is not too large, find the probabilities for X using binompdf or binomcdf.  Another option is to use the normal approximation with a continuity correction.
iii. When n is large (requires np ≥ 10 and n(1-p) ≥ 10), find the probabilities for X using the normal approximation.
3. Distribution of a sample count (X).

a. If X is the count of successes in an SRS of size n from a much larger population (population at least 20 times as large as the sample), and p is the population proportion of successes, then X is approximately binomial:  
[image: image2.wmf])

,

(

p

n

B

X

»

.  
4. Distribution of a sample proportion (
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a. If 
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 is the proportion of successes in an SRS of size n from a much larger population (population at least 20 times as large as the sample), and p is the population proportion of successes, then...
b. 
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 has mean µ = p and standard deviation σ = 
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c. When n is not too large, find the probabilities for 
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 using binompdf or binomcdf.
d. When n is large (requires np ≥ 10 and n(1-p) ≥ 10), find the probabilities for 
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using the normal approximation.
5. Any question about a sample count X can be transformed to a corresponding question about a sample proportion
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, and vice-versa, because 
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6. Distribution of a sample mean (
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a. If 
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is the mean of some quantitative variable X on an SRS of size n, then...

b. 
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 has the same mean as X, but its standard deviation is smaller:  
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c. If X is normal then 
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 is normal.

d. If the sample size n is large (n ≥ 40 is often used as a rule of thumb here), 
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 is approximately normal no matter what distribution X may have – this is the Central Limit Theorem.
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