Seven Proofs to Know: at least one of these will be on Exam 4.

Each student is assigned a proof to present in class during the last week of classes.

1. (Edwin) Let f be a function from A to B, and let g be a function from B to C.

Prove: If f and g are both 1-to-1 functions, then $g \circ f$ is a 1-to-1 function from A to C.
2. (Nathan) Let $f: N \rightarrow Z$ by the rule $f(n)=\left\{\begin{array}{c}-n / 2, \text { if } \mathrm{n} \text { is even } \\ (n+1) / 2, \text { if } \mathrm{n} \text { is odd }\end{array}\right\}$. Find the image of f and prove, in full detail, that your answer is correct.
3. (Thomas) Let a and b be real numbers with $a>1$ and $b>1$. First, explain why $\log _{a}(b)>0$. Then, use that fact to prove: $\log _{a}(n) \in \Theta\left(\log _{b}(n)\right)$
4. (Adrian) Suppose A and B are events in a sample space (S, P).
a. Disprove: If $P(A) \leq P(B)$, then $A \subseteq B$;
b. Use specific definitions and/or probability theorems to prove: If $A \subseteq B$, then $P(A) \leq P(B)$.
5. (Bre) Let A and B be events in a sample space. Prove: If A and B are independent, then A and \bar{B} are independent.
6. (Matt) Let X be a random variable on sample space (S, P). Prove: If X is not a constant function, then X is not independent of itself.
7. (John) Let a and b be positive integers. Prove, using basic definitions: b divides a iff $a \operatorname{div} b=\frac{a}{b}$.

