CS 225
Lab 8: Generating Permutations (Johnson-Trotter Algorithm)

Due date: 2-26-10
In this lab we create a permutation class and implement the Johnson-Trotter Algorithm for finding all permutations of {1, 2, 3, ..., n}. In combinatorics, a permutation is usually understood to be a sequence containing each element from a finite set once, and only once. The concept of sequence is distinct from that of a set, in that the elements of a sequence appear in a specific order. For example, the six permutations on the set {1, 2, 3} are {123, 132, 213, 231, 312, 321}.
What to do:

1. Start Eclipse and add a new class to the algorithms package, called Permutation.

2. Start Internet Explorer, go to our class website, and follow the link for Lab 8 assignment. Copy all the java code and paste it over the contents of Permutation.java back in Eclipse.
3. Note: An instance of the Permutation class has a sequence of digits from the set
{1, 2, 3, ..., n} stored in the int array "element", and a corresponding sequence of arrow information stored in the boolean array "forward". For example, the permutation 312 on the set {1, 2, 3}, where 1 and 2 have forward arrows and 3 has a backward arrow, would be represented by setting element equal to the array [3, 1, 2] and forward equal to the array [false, true, true].
4. Most of the methods still need to be implemented; this is your job. Work your way through the methods from top to bottom. They are ordered in such a way that you can often use already-written methods to implement remaining methods.
5. Use the description of the Johnson-Trotter algorithm on p.179 to guide your implementation of the johnsonTrotter method.
6. Run and debug! Your code probably won't work correctly the first few times. Insert debugging output statements as needed and do some detective work to find any logical errors in your code. Use the printWithArrows method to help in debugging.

7. Try running with different size parameters n in main, but keep n in the range 1 to 9.
8. To submit your lab, email me text file attachments for Permutation.java as well as your output listing.
// Permutation class for JohnsonTrotter permutation algorithm, p.179

// Permutations are on {1,2,...,n} where n < 10.

package algorithms;

public class Permutation {

// data members

int[] element;

// stores the elements of the permutation

boolean[] forward;
// forward[i] = true iff letter[i] has a

// forward arrow

// constructor for permutation 1,2,...,n, all backward arrows

// expects n to be in the range 1 < n < 10

public Permutation(int n)

{

}

// copy constructor -- makes an independent copy of an existing

// permutation

public Permutation(Permutation old)

{

int n = old.element.length;

element = new int[n];

forward = new boolean[n]; // defaults to all false

for(int i=0; i<n; i++)

{

element[i] = old.element[i];

forward[i] = old.forward[i];

}

}

// method to print a permutation along with its arrows;

// chars are printed with a space between each, and

// arrows are indicated above chars using ">" and "<"

public void printWithArrows()

{

String arrow;

for(int i=0; i<element.length; i++)

{

if(forward[i])

arrow = "> ";

else

arrow = "< ";

System.out.print(arrow);

}

System.out.println();

for(int i=0; i<element.length; i++)

{

System.out.print(element[i] + " ");

}

System.out.println();

}

// returns a string version of this permutation (no arrows)

public String toString()

{

StringBuffer buff = new StringBuffer();

for(int i=0; i<element.length; i++)

buff.append(element[i]);

return buff.toString();

}

// factorial method for small n, 1 <= n < 10

// returns -1 to indicate illegal input

public static int fact(int n)

{

}

// swaps two elements of the permutation, and

// swaps their corresponding arrows

// input: indices i and j into this.element

// result: swaps element[i] with element[j],

// and swaps forward[i] with forward[j]

public void swap(int i, int j)

{

}

// input: index i into this Permutation

// output: true iff element[i] is mobile in this Permutation

public boolean isMobile(int i)

{

}

// determines position of leftmost mobile element

// returns: index i such that element[i] is mobile in this

// Permutation and there are no mobile elements left of it

// note: returns -1 if there are no mobile elements

public int leftmostMobilePosition()

{

}

// determines whether this Permutation has a mobile element

public boolean hasMobile()

{

}

// determines position of largest mobile element

// returns: index i such that element[i] is the largest element which

// has an arrow pointing to a smaller adjacent element

// note: returns -1 if there are no mobile elements

public int largestMobilePosition()

{

}

// method to reverse the direction of all the elements

// larger than element[pos]

// input: index of element to compare with ("k" = element[pos])

public void reverseLarger(int pos)

{

}

// Johnson-Trotter algorithm for generating permutations

// input: a positive integer n

// output: an array of permutations holding all the permutations
// of {1,2,...,n}

public static Permutation[] johnsonTrotter(int n)

{

}

public static void main(String[] args)

{

int n = 3;

Permutation[] P = johnsonTrotter(n);

System.out.println("Length of array P is " + P.length);

for(int i=0; i < P.length; i++)

System.out.println(P[i]);

}

}
