CS 324 – GUI – Winter 2013
Lab #1 Assignment: First Proficiency Test
Due Date: Monday 1-14-13 (by 11:55 PM)
Recall that in Java there are no “functions” per se, since every method must be a member of some class. To create a “function” in Java, make a static method inside a class.
In this lab, to get started on learning (remembering?) Java, you will create and test several functions in a class called PracticeFunctions.
1. Start Eclipse. Create your own Eclipse workspace:
File > Switch Workspace.

Put your workspace on your flash drive or your personal laptop – NOT on the hard drive of a public lab computer.

2. Click the icon for “Go to the Workbench” if your workbench does not automatically display.

3. Create a new Java project called "Gui" as its own source container:

a. File > New > Project
b. Wizards: Java Project

c. Project Name: Gui

4. Create a new package called "lab1" within the Gui project:

a. right-click on Gui in the Package Explorer window

b. choose New > Package
c. Name: lab1

5. Create a new class called "Hello" within the lab1 package:

a. right-click on lab1 in the Package Explorer window

b. choose New > Class
c. Name: Hello

d. check the box to request a method stub for "public static void main(String[] args)"

6. Add code to your Hello class to create a “Hello, World” application in Java. The following syntax should do the job; insert your own message for variety:
 System.out.println("Hello! Java is my friend.");
7. Save your Hello class.

8. Successfully execute your Hello class (right-click > Run As > Java Application). Show me your console output before proceeding. (If this is a new workspace in Eclipse, you may have to execute the program twice in order to see the output.)

9. Create a new class called PracticeFunctions in the lab1 package.

10. Go to vault and copy the source code for lab 1. Paste it over the contents of your Practice Functions class in Eclipse. Save. There are several static methods and a main method for you to implement.
11. Sum of squares problem. Implement the “calculate” function. I’ve provided the static method getNum() that prompts the user for a positive integer and reads it from the keyboard. Use an accumulator to calculate the sum of the squares 12 + 22 + … + n2; put this code in the body of the method calculate(int n).
Add code to the main method to call getNum(), send the result to calculate(int n), and print a message back to the user. For instance, if the user entered “5”, your printed message should say something like, “The sum of squares up to 5*5 is 55.”
12. Max index problem. Insert code to implement the getRandomArray function, as well as the maxIndex function.
a. getRandomArray(int n) makes an array of random integers in the range 0 to 99 inclusive. The array values are printed as they are stored.

b. maxIndex(int[] A) takes an integer array A and returns the index of the largest number in the array.
c. Add code to the main method which calls getRandomArray to create an array of 12 random integers and report the index of the largest array element.
13. Fibonacci problem. Insert non-recursive code to implement the fib function.
a. fib(int n) takes a positive integer parameter n and returns F(n), the nth number in the Fibonacci sequence. Recall, the first 6 numbers of the Fibonacci sequence are
F(1) = 1, F(2) = 1, F(3) = 2, F(4) = 3, F(5) = 5, F(6) = 8, etc. In general, for n > 2,
F(n) = F(n – 1) + F(n – 2).

b. Add code to the main method which demonstrates the operation of the fib method, similar to the demo for sum of squares (ask the user for a positive integer n, and report back to them the value of F(n)).
14. When your code is working to your satisfaction, copy your output listing to a text document. Send the two files (source code listing, output listing) together into a compressed (zipped) folder and submit as Lab 1 on My Hanover.
