CS 225A
12-1-08
Lab 19: Computing a Binomial Coefficient
In Section 8.1 of our textbook, we saw several different algorithms for computing a binomial coefficient. This lab investigates the advantages and disadvantages of the various approaches: a simple recursive solution; a dynamic programming solution; and an approximate solution based on a combinatorial formula.
1. Create a new class in the algorithms package called "Binomial".

2. Give the Binomial class a data field "n" and a data field "k" (type int).
3. Write a constructor for initializing the values of n and k:

// constructor

// initializes n = a; k = b;

// input: int a >= 1; int b, with 0 <= b <= a.
 public Binomial(int a, int b)
4. Add a method "toString" which returns a String appropriate for printing this Binomial coefficient in the form "C(n,k)".

public String toString()
5. Add a method "valueR" which uses the recursive algorithm suggested by formula 7c, p.283 of our textbook:

C(n, 0) = C(n, n) = 1

otherwise, C(n, k) = C(n-1, k-1) + C(n-1, k)

The method will return a result of type long (an integer with more digits than an int). Here's a suggested implementation:

// Uses the recursive algorithm suggested by formula 7c, p.283

public long valueR()

{

// base case:

if(k == 0 || k == n)

return ???

// recursive case:

Binomial x, y; // use x.valueR() and y.valueR() to find

 // this.valueR()

x = ???

y = ???

return x.valueR() + y.valueR();

}
6. Add test code to your main method to see how well "valueR" works.

public static void main(String[] args) {

Binomial b;

// test some small C(n,k) values

for(int n = 1; n < 11; n++)

for(int k = 0; k <= n; k++)

{

b = new Binomial(n,k);

System.out.println(b + "=" + b.valueR());

}

// test some larger & larger C(n, n/2) values

for(int n = 5; n < 501; n = n+5)

{

b = new Binomial(n, n/2);

long val = b.valueR();

System.out.println(b + "=" + val);

}

}
7. Add a method "valueD" which implements the dynamic programming algorithm using an int array "A" of size (k+1) x (n+1) and returns A[n][k], the value of C(n, k).
Note 1: Check for k == 0 or k == n, and return 1 rather than using the dynamic programming algorithm in these cases.
Note 2: For good practice, once your code is working you can revise it to save memory by reducing A to only 2 rows!

// returns the value of this binomial coefficient calculated

// by the dynamic programming algorithm for C(n,k)

public long valueD()
8. Use the following main method to test the operation of valueD. (Don't call valueR anymore.) Insert the test code into "main", save, and run.

public static void main(String[] args) {

Binomial b;

// test some small C(n,k) values

for(int n = 1; n < 11; n++)

for(int k = 0; k <= n; k++)

{

b = new Binomial(n,k);

System.out.println(b + "=" + b.valueD());

}

// test some larger & larger C(n, n/2) values

for(int n = 5; true; n = n+5)

{

b = new Binomial(n, n/2);

System.out.println(b + "=" + b.valueD());

}

}
9. Use your calculator to verify the correctness of your output. I predict that for n sufficiently large, C(n,n/2) will not be calculated correctly by your program. What is that cutoff for n? _____ What explains the algorithm's breakdown at that point?
10. Implement an approximate value method for evaluating C(n, k) using formula 7b, p.283 of our textbook. For example, we can calculate C(10,4) as follows:

C(10,4) =
[image: image1.wmf]1

7

2

8

3

9

4

10

´

´

´

= 2.5 * 3.0 * 4.0 * 7.0 = 210.0 (which is exactly right since n and k are small)
Call the new method "valueA". It will return a result of type double (a "double-precision" floating point number). Here's a suggested implementation:

public double valueA()

{

// case 1:

if(k == 0 || k == n) // C(n,k) = 1 -- easy case!

return 1.0;

// case 2:

if((n-k) < k) // save time by calculating C(n,n-k)

{

Binomial b = new Binomial(n,n-k);

return b.valueA();

}

// general case:

double val = 1.0;

// val is the value to be returned, initialized to 1.0

double a = n;

double b = k; // a and b are used in the following loop

for(??) // k times, need to multiply and then divide

{

// val = val * ?? / ??;

// reduce a

// reduce b

}

return val;
}
11. Revise your testing method by inserting the following loops at the bottom of "main":

// test some small C(n,k) values

for(int n = 1; n < 11; n++)

for(int k = 0; k <= n; k++)

{

b = new Binomial(n,k);

System.out.println(b + "=" + b.valueA());

}

// test some larger & larger C(n, n/2) values

for(int n = 5; n < 501; n = n+5)

{

b = new Binomial(n, n/2);

double val = b.valueA();

System.out.println(b + "=" + val);

}

12. For each of the three algorithms (recursive, dynamic, approximate), summarize the algorithm's strengths and weaknesses regarding four factors: time efficiency, space efficiency, ease of coding, and correctness of results.

	Algorithm Type
	time efficient?
	space efficient?
	easy to code?
	correct results?

	recursive
	
	
	
	

	dynamic
	
	
	
	

	approximate
	
	
	
	

· For small n, which algorithm is best? ______________
· For large n, which algorithm is best? ______________
· Which algorithm is shockingly inefficient, though easy and correct? ______________
_1289216870.unknown

