CS 225A
11-17-08

Labs 17 & 18: Implementing weighted graphs; Prim's algorithm
The class WGraph implements a weighted undirected graph using adjacency lists. A graph with n vertices will be represented using a 1-dimensional linked list array of length n called LL, where LL[i] references the adjacency list for vertex i.
1. Start by adding a new class "WeightedEdge" to your algorithms package. In the new class dialog, indicate that WeightedEdge implements the interface "Comparable".
2. Give this new class one data field, an Integer array (not an int array!) "A" for storing the edge information (i, j, w), where i is a vertex number, j is a vertex number, and w is the weight of this edge or "null" if the edge does not really exist in the graph (a "missing" edge).

3. Add the following methods to the WeightedEdge class:

· public WeightedEdge(int i, int j) // constructor for a "missing" edge from vertex i to vertex j (sets weight to null)

· public WeightedEdge(int i, int j, int w) // constructor for a non-missing edge from vertex i to vertex j (sets weight to w)

· public int v1() // returns the int representing vertex "i" in edge
(i, j, w)
· public int v2() // returns the int representing vertex "j" in edge
(i, j, w)

· public Integer weight() // returns the Integer representing the weight for edge (i, j, w), or "null" if i and j are not adjacent

· public boolean isMissingEdge() // returns true iff this is a "missing" edge (weight is null)

· public int compareTo(Object X) // compares two edges by their weights; if "this" has the smaller weight, returns a negative value; if "this" has the larger weight, returns a positive value; if the weights are equal, returns 0. Note: a weight of "null" is treated as infinity.
· public boolean lessThan(Object X) // returns true iff
this.compareTo(X) < 0

· public String toString() // returns a String for printing this weighted edge as a 3-tuple, delimited by parentheses and commas. Note: a weight of "null" is reported as "infinity".
4. From vault.hanover.edu/~wahl (follow link to CS 225 and source code for labs 17 and 18), copy the main method for the WeightedEdge class, paste into WeightedEdge.java, save, run, and debug.
5. Create another new class, "MinHeap". From vault.hanover.edu/~wahl (follow link to CS 225 and source code for labs 17 and 18), copy the source code for the MinHeap class, paste over the contents of MinHeap.java, save, run, and debug.
6. Create a new class called "WGraph" for representing weighted graphs. A WGraph uses an array of linked lists "LL" to store adjacency lists. If the edge between i and j exists and has weight w, then LL[min(i,j)] will contain a WeightedEdge with information (i, j, w) or (j, i, w). Give WGraph two data fields:

// Data Fields

java.util.LinkedList[] LL;

// the edge between i and j will be stored in LL[min(i,j)]

int numV;
7. Implement the following methods in WGraph.

· public WGraph(int n) // constructor for an edgeless graph on n vertices
· public static int min(int i, int j) // returns the smaller of two ints

· public static int max(int i, int j) // returns the larger of two ints

· public Integer edgeWeight(int i, int j) // returns weight of the edge between i and j; returns null if i and j are not adjacent vertices

· public boolean isAdjacent(int i, int j) // returns true iff i and j are adjacent vertices

· public WeightedEdge getEdge(int i, int j) // returns a WeightedEdge of the the form (i, j, w) if vertices i and j are connected by an edge of weight w (w not null); returns null if they are not adjacent
· public void insertEdge(int i, int j, int w) // changes weight of the existing edge to w, or inserts a new edge between i and j if they are not currently adjacent
· public void deleteEdge(int i, int j) // removes an edge between i and j if they are currently adjacent
· public java.util.LinkedList edges(int v) // returns a linked list of all edges incident on vertex v
· public String toString() // returns a String suitable for printing the information of this WGraph, including number of vertices and all the edges incident on each vertex
· public static void printEdges(java.util.LinkedList E) // takes E, the result of a call to "edges(v)", and prints the information for the edges incident on v
· public WGraph Prim() // Prim's algorithm for constructing a minimum spanning tree. Returns the spanning tree as a new WGraph, leaving this WGraph unchanged
Note: To visit each node of a linked list, use an iterator (an object of type java.util.Iterator). For example, here is code to implement the edgeWeight method.

public Integer edgeWeight(int i, int j)

{

int v = max(i,j);

WeightedEdge X;

java.util.Iterator iterator;

iterator = LL[min(i,j)].iterator();

while(iterator.hasNext())

{

X = (WeightedEdge)iterator.next();

if(X.v1() == v || X.v2() == v)

return X.weight();

}

return null;

}
8. From vault.hanover.edu/~wahl (follow link to CS 225 and source code for labs 17 and 18), copy the main method for WGraph. Add additional code to test all the methods you've written. Save, run, and debug.
