CS 225 -- Algorithms

Name: ____________________
Lab 12: Computing a Binomial Coefficient
3-31-10

Due date: 4-7-10 (turn in this sheet, with written answers, and email me your source code)
In Section 8.1 of our textbook, we saw several different algorithms for computing a binomial coefficient. This lab investigates the advantages and disadvantages of the various approaches: a simple recursive solution; a dynamic programming solution; and an approximate solution based on a combinatorial formula.
1. Create a new class in your algorithms package called "Binomial". An object of the class is a binomial coefficient, C(n,k), where n is a natural number and k is in the range 0 to n.
2. Give the Binomial class a data field "n" and a data field "k" (type int).
3. Write a 2-argument constructor for initializing the values of n and k.
4. Write a "toString" method which returns a String appropriate for printing this Binomial coefficient in the form "C(n,k)":

public String toString()

{

// implement this

}

5. Add a method "valueR" which uses the classic recurrence relation for calculating C(n,k) using Pascal's Triangle:
· C(n, 0) = 1 and C(n, n) = 1

· if 0 < k < n, then C(n, k) = C(n-1, k-1) + C(n-1, k) [Pascal's Identity]
Note that valueR takes no arguments and returns a result of type long (an integer with more digits than an int can have).
6. Insert a main method to test valueR:

public static void main(String[] args)

{

 Binomial b;
 System.out.println("Using valueR...");
 System.out.println("Print rows 0 thru 10 of Pascal's Triangle:");

 for(int n=0; n<11; n++) // rows 0 thru 10
 {

 for(int k=0; k <=n; k++) // columns 0 thru n
{

 b = new Binomial(n,k);

 System.out.print(b.valueR() + " ");

}

System.out.println();

 }

 System.out.println("\n\nFind C(n,n/2) for n = 5,10,15,...,100:");

 for(int n=5; n<101; n=n+5)

 {

 b = new Binomial(n,n/2);

 System.out.println(b + " = " + b.valueR());

 }

}
7. You should notice that the second "for" loop in main takes a very long time to execute; terminate execution when you get tired of waiting. Now run it again and watch the clock. After 1 minute elapsed time, what is the largest value of n for which C(n,n/2) has been evaluated? n = ______
8. Write a method "valueD" which implements the dynamic programming algorithm of Section 8.1 using a 2-dimensional long array "C" of size n+1 (rows) by k+1 (columns). Note: The time efficiency class of valueD is
[image: image1.wmf])

(

nk

Q

, so time and memory are saved by using n-k for k when n-k is smaller; notice C(n,n-k) = C(n,k) by the left-right symmetry of Pascal's Triangle, so the returned value is not affected by this swap.

// returns the value of this binomial coefficient,

// calculated by the dynamic programming algorithm

public long valueD()

 {

int k = this.k;
// local copy of this.k

if(k > (n-k))

k = n-k;
// use n-k for k when n-k is smaller

// build the table -- see p.282

???

return C[n][k];

 }
9. In main, change all occurrences of "valueR" to "valueD". Save and run. QUESTION: How large is the table built by valueD, on input (n,k)? (Tell the big theta class.) _______________
10. You should find that the second "for" loop in main runs very quickly now -- hooray for dynamic programming! Verify the correctness of your output for some smallish values of n and make corrections if you find a problem.

11. I predict that for n sufficiently large, C(n,n/2) will not be calculated correctly by your program. What is the first value of n you see for which C(n,n/2) is not found correctly? ________ What explains the algorithm's breakdown at that point?
11. Revise valueD to save memory by reducing the table size in valueD to only 2 rows. Test again and make sure it works the same as before. QUESTION: Now how large is the table built by valueD, on input (n,k)? (Tell the big theta class.) ______________
12. Implement an approximate value method for evaluating C(n, k) using floating-point arithmetic and the well-known combinatorial formula shown below. As before, be efficient by using n-k for k when n-k is smaller.

[image: image2.wmf]1

1

2

2

1

1

)!

(

!

!

)

,

(

+

-

´

´

-

-

´

-

-

´

=

-

=

k

n

k

n

k

n

k

n

k

n

k

n

k

n

C

L

For example, C(10,4) =
[image: image3.wmf]1

7

2

8

3

9

4

10

´

´

´

 = 2.5 * 3.0 * 4.0 * 7.0 = 210.0
Also, since 2 < 6, C(8,6) = C(8,2) =
[image: image4.wmf]1

7

2

8

´

= 4.0 * 7.0 = 28.0
Call the new method "valueA". It will return a result of type double (a "double-precision" floating point number). Here's a suggested implementation, with a few details left for you to fill in.

// returns the value of this binomial coefficient,

// calculated by the combinatorial algorithm (result is approximate)

public double valueA()

{

// base case

if(k == 0 || k == n)

return 1.0;

// general case, 0 < k < n

int k = this.k; // local copy of this.k

if(k > (n-k))

k = n-k;
 // use n-k for k to save time

double acc = 1.0;

// accumulate the product, starting from 1.0

???

return acc;

 }
13. Revise your testing method by changing all occurrences of "valueD" to "valueA" in main. Save and run. Make sure valueA is working before going on.
14. For each of the three algorithms, summarize the algorithm's strengths and weaknesses regarding five factors: time efficiency, space efficiency, ease of coding, exactness of results for small inputs, and usability of the algorithm for large inputs.
	Algorithm Type
	time efficient?
	space efficient?
	easy to code?
	exact for small inputs?
	usable for large inputs?

	recursive
	
	
	
	
	

	dynamic
	
	
	
	
	

	approximate
	
	
	
	
	

· If you only need C(n,k) for n <= 8, which algorithm is "best", and why?
· If you only need C(n,k) for n <= 50, which algorithm is "best", and why?

· If you need C(n,k) for n >= 100, which algorithm is "best", and why?

4

_1331379246.unknown

_1331387601.unknown

_1331379465.unknown

_1289216870.unknown

