CS 225

3-19 & 3-22-10
Lab 11: Heaps

Due: Monday 3-29-10 (email me IntHeap.java and output listing)

Create a new class in the Algorithms package, called "IntHeap". Implement the basic heap functionality as follows.

1. Give your IntHeap a data member "heap" of type Vector. You'll have to import the Vector class (put an import statement right after the package statement).

2. We will store the maximum value in position 1 in the vector; position 0 will not be used. Write a 1-argument constructor for an empty heap with capacity n. Store a value such as -999 in position 0 (using the 1-argument "add" method of the Vector class) so that all future additions will have position 1 or more.

3. Write a 0-argument constructor for an "example" heap with elements stored in the vector in this order: 10, 6, 9, 2, 5, 7, 8. Use the 1-argument "add" method of the Vector class; it adds the new object at the end of the vector.
Because a "Vector" can only store references to objects, rather than primitive values, we have to store the numbers as objects of type Integer (not int). To create an Integer with a given int value i, use the syntax: Integer num = new Integer(i); to get the int value from an Integer object, use the syntax: int i = num.intValue();
4. Include the following decrease-by-half-and-conquer method for finding floor(log2(n)):

// static method to find floor(log2(n))

public static int floorLog2(int n)

{

if(n==1)

return 0;

else return 1 + floorLog2(n/2);

}
5. Write a "size" method for the IntHeap class. Remember, the size of the heap is one less than the size of the vector "heap" (why?).

6. Include the following method to print the heap:

// printHeap method

// prints the heap level-by-level with spacing between rows,

// and reports the number of elements in the heap

public void printHeap()

{

 // empty heap is a special case
 if(this.size()==0)
 {
 System.out.println("<empty heap>");

 return;

 }

 // non-empty heap
 System.out.println("This heap has the following " + size()
 + " elements:");

 for(int i=1; i <= this.size(); i++)

 {

 // print heap.elementAt(i), starting a new row
 // with each power of 2

 if(i>1 && ((int)Math.pow(2,floorLog2(i)))==i)

 System.out.print("\n\n");

 System.out.print(heap.elementAt(i) + " ");

 }

 System.out.println("");

}

7. Write a "findMax" method which returns, as an int, the largest value in this heap.
8. Write a "percolateUp" method which will help us insert elements into the heap. percolateUp takes one argument, an int called s (for start). Starting from position #s in the vector, compare that element with the value of its parent; if it's larger than its parent, slide the parent down and continue up from the parent position (see discussion, bottom of p.226 to top of p.227).

9. Write the "insert" method. It takes an int value, "val", puts it at the end of the vector, then calls percolateUp to restore heap ordering.
10. Test your implementation so far using the following main method; fix any problems you find.

public static void main(String[] args)

{

 IntHeap H = new IntHeap(); // example heap

 H.printHeap();

 System.out.println("max value in this heap is: " +

 H.findMax());

 H.insert(0);

 H.insert(4);

 H.insert(12);

 System.out.println("\nAfter inserting 0, 4, and 12...");

H.printHeap();

 System.out.println("max value in this heap is: " +

 H.findMax());
}

11. Write a "percolateDown" method which will help us implement deleteMax. percolateDown takes one argument, an int called s (for start). Starting from position #s in the vector, compare that element with the value of its larger child; if it's smaller than its larger child, slide the larger child up and continue down from the position where the larger child used to be.

12. Write the "deleteMax" method. It stores a copy of the max value as an int, moves the last element of the vector to position 1, and calls percolateDown to restore heap ordering. Notice that when the heap has size 0 or 1 to start, these are be special cases.
13. Add the following code at the bottom of main to test deleteMax, and run. Fix any problems you find.

int n = H.size();

// test deleteMax

for(int i=0; i<n; i++)

{

 H.deleteMax();

 System.out.println("\nAfter deleting max, this heap is:");

 H.printHeap();

}
14. Extra credit opportunity:
a) Write a 1-argument constructor for building a heap bottom-up from an int array.
b) Write a method heapSort which takes an int array, turns it into a heap using the part (a) constructor, and uses n "deleteMax" operations to put the ints back into the array in the correct order.
c) Discuss the time efficiency of your heapSort implementation.
3

