CS 225

Lab 10 hints

3-17-10

1. Write a “setCount” method in the GraphNode class (a 1-liner).

2. Write a "printCounts" method in the Graph class (prints the count for each node). Use this method to help with debugging "DFS" and "hasCycle".

3. In the method “DFS” which we wrote on the board Monday, we made a logic error. To see if “start” has the value we’re seeking, we need to compare start.value and val using an equals method, not “==” (which will just compare the references, not the values).

Instead of:
if(start.getValue() == val)
Use:

if(start.getValue().equals(val))
4. Similarly, in the recursive “dfs” method, use the syntax: if(w.getValue().equals(val))
5. In the method "dfs" which we wrote on the board Monday, we made another logic error. After calling dfs on w, we need to test the result to see if "val" was found! Implement an appropriate fix.
6. Use the following main method to test DFS by looking for node "c" from all the nodes of G. You can copy the code from our class vault page if you want to save time typing. Try running Graph.java, and fix any problems you find.

public static void main(String[] args)

{

Graph G = new Graph(); // example graph, 11 nodes

System.out.println("Here is the current graph:");

G.printGraph();

// test DFS

for(int i = 0; i < G.size(); i++)

{
System.out.println("Node # " + i + " = " + G.getNode(i).getValue());
// Starting from node #i in G, look for the "c" node via a path...

GraphNode C = G.DFS(G.getNode(i),"c");
if(C != null)
System.out.println("G.DFS(G.getNode(i),\"c\") returns: "+C.getValue());
else

System.out.println("G.DFS(G.getNode(i),\"c\") returns: NULL");

}

}
7. Modify the standard depth-first search algorithm (textbook, p.166) to implement the hasCycle() method.

8. When the method is working correctly on the current graph G (from the default constructor), try removing the edge from node "d" to node "e" (by commenting out that line of code in the constructor) and running hasCycle() again -- it should not find a cycle without the edge (d,e).
9. Change the default constructor one more time -- delete the edge (d,e), but create an edge (j,k). Now hasCycle() should find a cycle.

10. Lab 10 is due Weds 3-31-10. [For extra credit, implement the last two methods: isConnected, components.]
