Format your pseudo code like the examples in the book like on p.7

Algorithm sieve(n)

//tell what problem is solved

//input :tell domain of inputs

//output: tell what is returned from the function

Well-commented pseudo code to implement the algorithm

Write clear and simple code

Avoid obvious inefficiencies

For 1.2 #4 assume a≠0.

1.3 #1 show your work and justify your answers

Method for sorting by comparison counting

In a Stable sort, if two values are equal in the original list they keep the same relative position to each other after sorting.

Ex. Sort 3,2,5,1,2,7

A stable sort will result in: 1,2,2,3,5,7

5 desirable properties for an algorithm

1. Time efficiency

2. Correctness

3. Space efficiency

4. Generality

5. Simplicity

Of these, correctness is most important

Then, time efficiency

Time efficiency is expressed as function of the impact size.

Some typical ways to measure impact size

1.) if input is a list, input size is n=length of list.

2.) If input is a matrix(a 2-d array of numbers), can think of the matrix as a list: input size=m*n

3.) If input is a graph: |Vertices|^2
4.) If the input is a natural number n and the problem is to test a property of the number(eg, is n prime?), the “size” of input n is the number of digits in n.

For binary digits: n=14
Next, identify the algorithm’s “basic operation” and count how many times it executes on an input of size n: calculate C(n).

Most importantly, determine how quickly C(n) increases as n-> ∞

Some important functions, slower to faster:

1,Log2(n), n, n*log2(n),2^n,n!,n^n
Math Analysis of Non-recursive Algorithms

P 62. General plan

1.Decide how to measure input size.

2.Identify algorithms “basic operation”

3.Decide whether C(n) [the count of how often the basic op’n execute] depends only on problem size (n) if not, probably just analyze worst case.

4.Express C(n), or Cworst(n), with summation notation

5.simplify to ‘closed form’ notation.(see formulas p. 470)

Algorithm findMatch(T[0…n-1], P[0…m-1])

//brute- force string matching

//input: char arrays T[0…n-1] and P[0…m-1] where 1<m<n

//

begins, or -1 if not found

int I,j

for(i=0 to n-m)

j=0

while(j<m and P[j]==T[j+i])

j++

if(j==m)

return i

return -1

1. Input is measured by the parameters, n and m.

2. Basic operation is the comparison, j<m && p[j]==T[j+i]

3. Obviously we have to consider best-case, worst-case etc.

4. Best-case: P is equal to T[0…m-1]

Cbest(n,m)=m£(-) (m)

Worst-case: Unsuccessful search with “almost-n-match” at each pt



n-m

Cworst(n,m<   ∑   (m=m+m…+m)   n-m+1 times



i=0



=m(n-m+1)



=mn-m^2+m£(-)(mn)

ex for(i=0 to n-2)


for(j=0 to n-1)



for(k=0 to j-1)




do S
n(n+1)
   2
2.1 #5

a) Let n be a positive interger

We claim that n can be represented with b=[log2n]+1 binary digits

Case 1: n = 2^k where k=0,1,2,3…

For example 16=2^4 = (10000)v2

In general, 2^k= 100…000v2 k zeros

n=2^k requires k+1 digits in binary

since logv2n=logv2 2^k, [log2n] + 1 =k+1 is correct

case 2: 2^k<n<2^k+1

for example, n=23=16+7=(10000)v2+(111)v2=10111 still just 5 digits, like 16

so when we add the bits for x to the bits for 2^k there’s no carry- still just k+1 bits for n.

try 329, which needs 3 decimal digits

[log 329]= log[100]

=[log10^2]

=2

b)[logv10 n]+1

c) because logv10(n)= logv10(2)*logv2(n)
2.2, 6b

Is b^n£(-)(a^n) for b>a?

Consider lim n->∞ b^n/a^n=lim n->∞(b/a)^n=∞ since b/a>1.

b^n grows faster

2.2 #2

a) yes, since n(n+1)/2£O(n^2)CO(n^3)

2.2 

3.

c. logvb(x^2)=2logvb(x)

logvb(x^2)£(-)(logvb(x))

Bc. (-)(n^2logn)

Because…

2nlog(n+2)^2=4nlog(n+2)£(-)(nlogn)

and (n+2)^2 log(n/2) = n^2 log(n/2)£(-)(n^2 logn)

so, (-)(nlogn)+(-)(n^2logn)£(-)(n^2 log n)

n^2.5, n^2, n, √n,n^(1/3),log(n),1

page 470 for the formulas

Homework 3 due Friday

2.3 # 1,2,4,5,9

2.4 # 1,2

Exam 1 soon(next week)

2.4 Analysis of recursive Algorithms

Ex: find the depth of a binary tree

The depth equals the path of longest path from root.

With just depth of Root=0

The empty tree is depth of -1.

To get the depth you take the left and the right sub-trees, and then the larger depth +1 is equal to the total height

//find depth of binary tree

//input: a binary tree called “tree”

//output: an interger d>-1 for its depth

1.measure input size by n=number of nodes in the tree.
2.Let’s count A(n)= # of additions (A(n)=n) “No matter the shape”

3.If we are calling additions then we will not need best/worst-case.

4. A(n)=1+A(left tree)+A(right tree)… not a great example of a recurrence relation
return 1+ max(depth(L),depth(R))->

1+max(depth(LL),depth(ø))->

1+max(depth(LLL),depth(LLR))->

1+max(depth(ø),depth(ø))->

1+max(depth(ø),depth(ø))
Algorithm depth(tree)

If(tree is empty)  //comparison- see if root==NULL

Return -1;

Return 1+ max(depth(leftSubtree), depth(rightSubtree))

Algorithm factorial(n)

//finds n!

//input: integer n≥1

//output: n*(n-1)*…*1

if(n==1)



return 1;

return factorial(n-1)*n;

Analysis:

1. Say input size = input = n.

2. Count multiplications, M(n).

3. The input size determines M(n), (don’t need best/worst-case.)

4. Recurrence relation

M(n)= M(n-1)+1, n>1

M(1)=0

5. Need a closed form if possible…

#1backward substitution

M(n)=M(n-1)+1

        =M(n-2)+2

        =M(n-3)+3

        =M(n-(n-1))+(n-1)

#2 Forward guessing

M(1)=0

M(2)=M(1)+1=1

M(3)=M(2)+1=2

M(4)=M(3)+1=3

…

Guess:M(n)=n-1
p. 72 general blan

1.Decide on parameter(s) to measure the input size

2.Determine the Algorithm’s basic operation.

3.Determine if the operation count depends ONLY on input size(if not, consider best-case, worst-case, ets).
4. Write a recurrence relation for the operation count.

5.Solve the recurrence relation and find the big (-) class.
Practice solving Recurrence Relations

Ex:
x(n)=x(n-1)+n, n>1

x(1)=2

Forward guessing:

x(1)=2

x(2)=x(1)+2=4

x(3)=x(2)+3=7

x(4)=x(3)+4=11

x(5)=x(4)+5=16

Try not collapsing sums

x(1)=2

x(2)=2+2

x(3)=2+2+3

x(4)=2+2+3+4

x(5)=2+2+3+4+5

=1+(1+2+3+4+5)

x(n)=1+ (n(n-1))/2

backward sub

x(n)=x(n-1)+n

=x(n-2)+(n-1)+n

=x(n-3)+(n-2)+(n-1)+n
P 123 general description

1. divide a problem instance into 2 or more smaller instances of the same problem.

2. Solve the smaller instances

3. Combine those solutions to get an overall solution

Problem: need to clean my house!

Plan divide into 5 sub-areas of house and clean each area

Problem: sort an array A[0…n-1]

Plan sort A[0…(n/2)] and A[(n/2)…n-1] then merge the sorted lists

F(n) counts for splitting into 2 lists and then merging at the end.

The typical run-time analysis for divid-and conquer gives:

T(n)=aT(n/b)+F(n)

-a

-b is how many sub problems

-f(n) is the “overhead”- time to divide into sub-problems then to combine those solutions at the end.

In binary search, b=2 but at a=1. You only have to search one of 2 sublists

T(1)=1

And T(n)=2T(n/2)+1

(n/2)=b=2 sub-problems

2=a=2-solve both

+1= overhead

T(1)=1

T(2)=2.1+1

T(4)=4+2+1

T(8)=2(4+2+1)+1=8+4+2+1

3

∑2^i=2^(k+1)-1£(-)(n)

i=0

Master Theorem

If f(n)£(n^d) with d>0 then T(n)£{(-)(n^d), a<b^d





        (-)(n^d*logn), a=b^d





        (-)(n^lobvb(a)), a>b^d

using master theorem

f(n)=1=n^0=>d=>0

a=2 
b=2

b^d=2^0=1

therefore T(n)£(-)(n^logv2(2))

=(-)n^1

=(-)n
5.2  Depth-first search and breadth-first search

Option 1 for representing a graph:

Adjacency lists- list of the nodes with a list of the adjacent nodes to that node

Option 2: adjacency matrix

Boolean array for showing which are adjacent

Matrix can be better or the list can be easier. For like a large input, but then again the list can be better for those with sparse graphs.

A tree is a connected acyclic graph.

· connected: for all nodes x,y there’s a path from x to y.

· acyclic: no “cycles” no way to go round trip to reach the same point.
Question-

Write code to solve this problem. In a given graph with a given node g, find node h≠g, so that h and g store the same value, where g and h are connected by some path in G.

Solution-

Imagine we have adjacency lists representing the graph. The graph nodes are stored in an array. 
Plan-

Algorithm pathSearch(node g, node current)

Remember home base= g.

Base-if(current !=g and current.val==g.val)

Return current;

Recursion-
For(i=0 to current.degree())
{

//pathSearch from each adjacent

//node not already visisted

Newcurrent= L.[i];

If(newcurrent.visited==false)

pathSearch(g,newcurrent
A non-recursive breadth-first search

Plan:

Mark g as visited

Enque g’s neighbors

For each queued node, is it the node we want? If yes, done.

Else: enque each of its unvisited neighbors

If queue becomes empty

Search was unsuccessful
Take off number 9 from the 5.5 homework 

5.5 #3.

Algorithm fake3(A[0…n-1],i,j) //initially, i=0 and j=n-1
M=j-i+1;
if(m==1)

//base case 1

if(m==2)

//base case 2

if(m%3==0)

//three equal size groups

i1=i;

j1=i1+m/3-1;

i2=j1+1;

j2=i2+m/3-1;

i3=j2+1;

j3=j;

elseif(n%3==1)

//extra goes into group three

else

//group 3 has 1 fewer

if(A[i1…j1] weighs less then A[i2…j2])

I=i1;

J=j1;

Elseif(A[i2…j2] weighs less than A[i1…j1])

I=i2;

J=j2;

Else

I=i3;

J=j3;

returns fake3(A,I,J)
b. W(n)=# weighings

W(1)=0

W(2)=1

W(n)=W(n/3)+1

W(1)=0

W(3)=W(1)+1=1

W(9)=W(3)+1=2

W(27)=W(9)+1=3

W(3^k)=k=logv3(n)£(-)(log2(n))

5.4

4.

c.

Count swaps S(n).

S(1)=0

S(n)=n*(S(n-1)+1)


S(n)£bigomega(n!)

5.2 #6

B.F.S. “forest”

Ex:

Bfs from vertex A

A root=start vertex

A,B,C,D,E,G,F

“crossedge” is…already in the que but connects to that item for example e-g and f-g

a. the graph has a cycle iff the B.F.S tree has a cross edge.

A GraphNode has

Value (string)

Next (vector of adjacent Graphnodes)

Count (int for graph
DFS(GraphNode start, String val)

//returns a node in this graph

//with value val which is connected to start by a path
//see page 166

(implement “resetCount” which puts all nodes back to count=0

public void resetCount()

{

for(int i=0; i<node.length;i++)


node[i].setCount(0);

}

public GraphNode DFS(GraphNode start, string val)

{


this.resetCount();


this.count=0;

//find I so node[i]=start

//for(int i=0; i<node.length;i++)

//
if(node[i]==start)

//

break;

//just need one call to dfs

//for(int j=i; j<i+node.length;j++)

//if(node[j%node.length].count==0)

//dfs(node[j%node.length]);

return dfs(start,val)
}

public  dfs(GraphNode v, String val)

{

count ++;

 v.setCount(count);//mark v with count

for(int i=0;i<v.degree();i++)


{


GraphNode w= (GraphNode) v.next.elementAt(i);

If(w.getValue()==val)


Return w;

If(w.count==0)


dfs(w);


}
return null;

}
chap 6 transform-and-conquer

problem instance-transform problem-solve new problem

ex2 transform by simplifying the broblem

problem: find the minimum distance between 2 values in an array A[0…n-1].

Brute force would use a double forloop and would be n^2

Easier problem: find the minimum distance in a sorted list.
Ex3: transform to a different type of problem

Problem:

Given 3 linear equs in 3 unknowns, find their point of intersection.

Transform to a linear algebra problem:

Matrix A= [3,7,2]     c=[10]


      [8,1,5]
  [20]


      [1,-1,2]        [5]

solveA*[xyz]=c

by multiplying both sides by A^-1

then [xyz]=A^-1*c.

A priority queue is a multiset of items with associated priorities, supporting these operations:

1. enqueue

2. find the highest priority item

3. delete the highest priority item
idea 1: keep the items in a list sorted in descending order by priority.(vector)


say we have n items

1. for enqueue, do a binary search to find the spot. The resulting shifting will take (-)n time.

2. Finding, deleting highest will be (-)1

Compare with using a heap instead of a sorted vector

A heap is a complete binary tree

It satisfies parental domination

Parent priority> child priority

Now enque 11

Momentarily imagine it as a new “last” node

Heapify to re-establish

Parental domination

≤log2(n+1)

lab 11: write an intheap class

to efficiently

add a new int

delete max int

report the maximum int

//data members

Vector heap; //holds the ints
Children of heap (3) are at i=6 and i=7

Children are 2k and 2k+1

Parent are floor of the number over 2

