Java Tidbits from Liang Chapter 7 -- GUI day 3
1. A class defines a type. Any variable of that type can reference an instance of the class. Explain what each element of the following code does:
Rectangle.setColor("pink");
Rectangle r1, r2;
r1 = new Rectangle(2.5,1.7);
r2 = new Rectangle(2.5,1.7);
System.out.println(r1 == r2);
/*assume we have an "equals" method in Rectangle which checks for equal widths & equal heights */
System.out.println(r1.equals(r2));
2. A variable which references an instance of a class is called a "reference type variable" or "reference variable." The memory location associated with a reference variable stores a reference to an object (not the object itself). When we pass an object as a parameter, we actually pass a reference to the object.

3. All parameters are passed to methods using pass-by-value. For a parameter of a primitive type, the actual value is passed; for a parameter of a reference type (an object), the reference to the object is passed.

4. A reference variable which has been declared but not given a value will hold a special Java value, null. null is a reference type literal, just like true is a boolean type literal and 5 is an int type literal. If you invoke a method on a reference variable with null value, you will get a runtime error called NullPointerException. Be sure to initialize your reference variables before you try to use them!
5. Java has automatic garbage collection. If an object is referenced by no reference variables, the JVM will automatically detect this fact and reclaim its space in memory. No destructors (like in C++) are needed.
6. The keyword this serves as the proxy for the object that invokes the method. It can also be used in the first line of code for a constructor to invoke another constructor of the same class -- see Liang p.236.
7. In Java, arrays are objects in the Arrays class. As such, they have useful pre-defined methods such as equals (two arrays are equal if they have the same contents in the same order). Array reference variables can be passed to methods just like any other reference type variable; of course, then entire contents of the array are not passed, just a reference to where that information is stored in memory.
8. When space for an array is allocated, the array size must be specified (number of elements that can be stored). The size of an array cannot be changed after the array is created. If myList is an array reference variable, then myList.length will return the declared size of myList.
9. When an array is created, its elements are assigned default values, depending on the data type. In particular, numeric types default to 0, boolean defaults to false, and object types default to null.
For more helpful tidbits, read Chapter 7 and review the Chapter Summary (p.249). Next week we move on to Chapter 8 (String class).
