CS 225

Unit Testing with JUnit 4 and Eclipse

What is unit testing?
Unit testing is a basic level of software testing. It operates at the function or method level to try to find defects in the implementation of a given class.
Unit testing alone cannot verify the functionality of a large software project; it simply assures the developers that the individual building blocks (classes) for the project do seem to work, at least in isolation. Finding defects in how the units have been assembled to create a whole system, and the overall functionality of the system, is the goal of other testing methods and is beyond the scope of CS 225.
Eclipse notes for Lab 2, Unit Testing for the Quadratic class
Once you have implemented your Quadratic class, it is time to create the unit testing code. Eclipse will help you to do this using JUnit 4, a simple framework for writing repeatable Java unit tests.
Start eclipse 3.6 to your workspace. You may have to search for version 3.6 on Local Disk (C:). If you use a different version, JUnit testing may not work as expected.
[image: image1.png][0 > Computer » LocalDisk(C) » ecipse35 » < o9) earch ctpse 36

Oganize B Open Bum Newfolder

Date modified Type Size

¢ Favorites

1/19/2013 1147 AM File folder
9/9/201011:53AM File folder
1/19/2011 1101 AM File folder
1/19/201110:51 AM File folder
1/19/2011 1101 AM File folder
1/19/201110:29 AM File folder

1/19/2011 1102 AM XML Document 101 kB

8/10/2010548PM__ Application 52K8

1/19/2011 1103 A Configuration seft... 1KE

8/10/2010548PM Application ukB

% Computer 2/25/20056:53PM HTML Document 17k

& Local Disk (C:) & notice 4/27/20104:23PM HTML Document oKe
o= Removable Disk | ~

eclipse Date modified: 8/10/2010548PM Date created: 1/19/201110:26 AM

Application Size: 520 KB

Create QuadraticTest.java
Right-click your Quadratic class file in the Package Explorer.

new → JUnit Test Case

New Junit Test Case dialog. See below. We want a new JUnit 4 test (click the radio button) with method stubs for setUp() and we want Eclipse to Generate Comments (click checkboxes, then Next).
[image: image2.png] Newliok Test o S S, €2 T

JUnit Test Case
St thenameathe n s cae Yo v thepons o pecty |
the class undertest and on the next page, to select methods to be tested.

Source folder: Algorithms/src Browse...
Package: lab2 Browse...

Name: QuadraticTest

E oo ="

Which method stubs would you like to create?
setUpBeforeClass) [] tearDownAfterClass)
setUp0. tearDown()
[constructor
Do you went to add comments? (Configure templates and default value here)

Class undertest: lab2.Quadratic Browse...

Select methods for which test method stubs should be created...

select all methods in Quadratic except main

do not select methods in Object

Finish
If Eclipse asks you about adding JUnit 4 to the build path, click OK.
[image: image3.png]= Add JUnit 4 lbrary to the buid path

QuadraticTest.java should now exist in your lab2 package.

Add testing code to QuadraticTest.java
Components in the Eclipse view can be dragged around to reconfigure the windows. Reconfigure your Eclipse windows to make the source code and the testing code visible in side-by-side windows, as shown below. Minimize the other windows for the moment so you can fill the screen with the source file and the test code file.

[image: image4.png]2 Java - Algorithms/src/lab2/Quadratic java - Eclipse SDK. —— | - —
Fie Edt Run Source Refactor Navigste Search Project Window Help

. 1] B $-0-Q-HEG- O POEAED: H-FH-0Ero-

5] QuadraticTestjava 53 [3) Quadraticjava £3
®/+0 = | Package 1ab2:
package 1lab2:
Ay
@ import static org.Jjunit.Asserc.:[] * gauthor wahl

* B simple class for guadratic expressions of the form a®x"2 + b*x + ©
* (source code for lab 2, Algorithms, CS 225)
=/

public class Quadratic

public class QuadraticTest (<
/7 aata tielas
® Akl private double // coefficient of x"2
+ Gtnrows java.lang.Exceprion private dousle
*/ private double c; // constant
= cBefore private dowsle aiscriminant; // equals bob - §%acc
public void setlp() throws Exception (
) s e
+ 5-axg constructor
R + Constructs the Quadratic objsct corresponding To K2 + bUE + ©
+ Test method for (Glink labz.QuadratictQuadratic(douple, double, dc - the leading coetficient
s - the linear coetficient
S erest - che conscant cerm
public void testquadratic() ¢
fail("ot yet implementear s © puwlic Quadratic(dowle &, douwble b, douwble c)
y <
this.a = ar
R this.b = b;
* Test method for {@link lab2.Quadratic#toString()}. this.c = c
s discriminant = bb - dar
S Grest
public void testTostring() ¢ y
fail("ot yet implementear):
) s e
- + converts this Quadratic to its String repressmtation -
‘ D g ;
Witsble Smartlnsert sEfeRE

1219PM
1

=N

QuadraticTest is itself, of course, a class; in Java, all methods must be inside of some class, so test methods need a class to call their own as well. Look through the automatically-generated QuadraticTest.java code to see what’s what.
As with most classes, the first thing you probably want to do is declare some class variables (data fields). I suggest we start with 3 cases; you will need to add more instances of the Quadratic class later on.
The beginning of your class definition code should look as follows:

public class QuadraticTest {

// data fields

Quadratic f, g, h;

static final double TOL = .001; // tolerance for “equality” of doubles

/**

 * @throws java.lang.Exception

 */

@Before

public void setUp() throws Exception {

}
“@Before” indicates that setUp() will be called at the beginning of each test. In the code for setUp, we “set up” a testing situation which is then available for each individual test.

Insert code into the body of setUp() so we’ll have examples on which to try our tests.
f = new Quadratic(2, 0, -1);
// f(x) = 2*x^2 – 1, 2 roots
g = new Quadratic(0, 3, 7); // g(x) = 3*x – 7, 1 root
h = new Quadratic(0, 0, 7.2); // h(x) = 7.2, no roots
In the body of each test method, we insert our testing code. You can write normal-looking Java code to create and initialize variables, call methods, etc. What might look unfamiliar is the assert statements we use to compare expected results with actual results.
Here are two asserts which we’ll use in Lab 2. You can find more if you look around on the internet.

assertEquals(int expected, int actual) is used to see if the correct answer for an int value matches the actual int returned by some method.

assertEquals(double expected, double actual, double tol) is used to see if the correct answer for a double value, “expected”, is within some tolerance “tol” of the actual double returned by some method.

testQuadratic
Delete the line of code (fail(“Not yet implemented.);”) in the body of testQuadratic.

Use assertEquals to write testing code in testQuadratic to be sure the constructor correctly initialized the data fields for f and g (see setUp()).
You know the fields for f are supposed to be 2, 0, -1, and 8. Compare these values with f.getA(), f.getB(), etc. to test the construction of f. Repeat for g. Total of 8 asserts.

assertEquals(2, f.getA(), TOL);
// etc.

testToString
Recall that “compareTo” returns an int, which should be 0 if the strings are identical. No error tolerance is needed for comparing 0 to another int.
Use assertEquals to compare 0 (correct value) with f.toString().compareTo(???), where you replace ??? with the string literal which should result from calling f.toString(). Hint: run Quadratic.java to create this string literal in the console window, then copy and paste.
testHasRoots

Write some asserts for testHasRoots. Before turning in your assignment, be sure to include enough different tests to cover each branch of the logic for this method. You can start with fewer asserts, of course.
assertEquals(true,f.hasRoots());
// etc.

@Ignore

Disable the rest of the tests for now so we can see how to run the JUnit testing. To disable a test without commenting it out or deleting it, just add the @Ignore annotation in front of the @test:

@Ignore

@Test public void testGetB()
{

fail("Not yet implemented");

}
Run QuadraticTest.java
Time to run your tests! Right-click in the QuadraticTest.java window: run as → JUnit test
If none of your tests failed, you will see a happy green bar. B^)

If one or more of your tests failed, the JUnit tab will show a red bar. Sadness. In the Failure Trace window you get information about which tests failed.
· Decide if your testing code is incorrect or if your original source code is the problem.
· Fix the problem.
· Save.
· run as → JUnit test
· Repeat as needed until you’ve achieved a happy green bar!
To Finish Lab 2:

1. Go back and implement testRoots. Include three cases where a != 0: 2 roots, 1 root, no roots. Include at least one case where a=0 and b!=0, and at least one case where a=b=0.

2. You don’t need to test the getters and setters, but do implement all the other tests.
3. Add more asserts to any of the test methods to assure full coverage. Note: for a simple one-line method such as “toString”, one assert is sufficient. For a method with more complicated logic such as “hasRoots”, use enough asserts to at least run through each branch of the logic once.
4. run as → JUnit test and fix problems until your code is passing all your tests.

5. Quit Eclipse.

6. Zip your .java files (Quadratic, QuadraticTest) together into a compressed folder and email the folder to me as an attachment.
7. Due date is Tues 1/22/13 at 5 PM.
1 | Page

