CS 324
Reading Questions for HFDP Chapter 5: The Singleton Pattern
· Read HFDP Chapter 5
· Answer the following questions and upload your answers on My Hanover.

· Due 8 AM, 3-21-13
1. What's the purpose of writing a class which can only be instantiated one time? Why might this be important in an application?

2. In the context of the classic singleton pattern, what does "lazy instantiation" mean?

3. Why is lazy instantiation especially important for resource-intensive objects?
4. I want to use the "classic" singleton pattern in my class GameAccounts so that there will be a single global registry of gamers.

public class GameAccounts

{

private static GameAccounts accounts;

// other data members ...

// constructor ...

// getInstance() method ...

// other stuff ...
}
a. In the classic singleton pattern, the constructor is declared to be _____________ so that only the class GameAccounts can instantiate a GameAccounts object.
b. Write the getInstance() method for the GameAccounts class using lazy instantiation.

c. Write the getInstance() method for the GameAccounts class using eager instantiation.

5. Give a concise definition of the singleton pattern.

6. The singleton pattern involves taking a class and letting it manage a single instance of __________. It also provides a _________ access point to that instance.

7. By adding the _____________ keyword to getInstance(), we force every thread to wait its turn before it can enter the method. That is, no two threads may enter the method at the same time. This fixes the problem of different threads possibly getting hold of different instances of our Singleton. In what way is this NOT a good fix?

8. Eager instantiation is another way to fix the multithreading problem. Why *might* it not be the best fix?

9. Double-checked locking is yet another way to fix the multithreading problem. But, it doesn't work in Java _____ or earlier.

10. Prior to Java 1.2, a bug in the ____________ collector allowed Singletons to be prematurely collected if there was no global reference to them. D'OH!
