Math 461, Fall 2010

Chapter 3

Sequences and Series
     Many of the more important functions studied in real analysis, such as the exponential or trigonometric functions, are most conveniently defined using power series.  The familiar power series for the sine and cosine go back at least to Newton in 1676; they were derived again by 
de Moivre in 1698, by James Bernoulli in 1702, and were widely used by Euler in the 1730s. 

     Power series are, if anything, even more important for the study of complex functions.  In the 1820s, Cauchy made considerable use of power series (
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) in a complex variable z.  In particular, any real function having a power series representation automatically gives rise to a complex function with a corresponding complex power series, which provides a natural method for generalizing functions from the real to the complex case.  In the 1840s, Weierstrass showed how to build up the whole of complex function theory using power series methods.

     In this chapter we shall develop some elementary properties of sequences and series of complex numbers, mostly by direct analogy with the real case, and then specialize to a deeper study of power series.

1.  Sequences
     For our purposes, sequences are required only as a stepping-stone towards series.  

Definition.  A sequence in C is a function from the natural numbers to C.  We usually write the function values with subscripts instead of function notation: zn = f (n).  The entire sequence is denoted with parentheses: 
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Definition.  Let z be a complex number. A sequence 
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in C has the limit z provided that for every 
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, there exists a corresponding integer N such that for all n > N, 
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.  If a sequence has a complex limit z, it is said to be convergent, and we write 
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.  If there is no complex number z such that 
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 converges to z, the sequence is divergent.
     The problem of finding limits of complex sequences can be reduced directly to the real case.
Theorem 1.  Let 
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 be a sequence in C, where 
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 are sequences in R.  Let z = x + iy, where 
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Definition.  Let 
[image: image15.wmf])

(

n

z

 be a sequence in C.  We say 
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 is a Cauchy sequence provided the terms of the sequence become arbitrarily close together as we move out into the tail of the sequence:    for all ε > 0, there exists an integer N such that for all m, n > N, 
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     The following is a direct consequence of the General Principle of Convergence for real sequences (Cauchy sequences in R are convergent).

Theorem 2 (General Principle of Convergence).  Let 
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 be a sequence in C.  The following are equivalent.

a) 
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 converges to some complex number z.

b) 
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Exercise 3.  Determine whether the following sequences converge, and find the limits of those which are convergent.
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Exercise 4.  For which values of z do each of the following sequences converge?

a) 
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, where k is a positive integer constant

2.  Series

Definition.  Given a sequence 
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 we can form a related sequence of partial sums defined by 
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.  We say that the series 
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 converges to s (where s is a complex number) provided the sequence of partial sums 
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.  A series in C which converges to some s in C is called convergent.  If there is no such s, the series is divergent.  If 
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     Any question about the convergence of a series can be turned into one about the sequence 
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 of partial sums.  For example, using the General Principle of Convergence, we have the following.

Theorem 5.  Let 
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 be a series in C.  The following are equivalent.

a) 
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 converges to some s in C.
b) The partial sums of the series are a Cauchy sequence:  For all ε > 0, there exists an integer N such that for all 
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Exercise 6.  Let 
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.  Use the previous theorem to determine whether or not the series 
[image: image46.wmf]å

¥

=

0

r

r

z

 converges.
     As for sequences, the summation of a complex series may be reduced to the equivalent real series.  

Theorem 7.  Let 
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Exercise 8.  Let 
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.  Use the previous theorem to determine whether or not the series 
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     As in the real case, we can add convergent series and we can multiply them by constants.

Theorem 9.  Let 
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[image: image57.wmf]C

c

Î

.

a) 
[image: image58.wmf]å

å

å

+

=

+

r

r

r

r

b

a

b

a

)

(


b) 
[image: image59.wmf]å

å

=

r

r

a

c

ca

)

(


     When verifying that a complex series converges without computing its actual sum, it is often better to concentrate on the modulus of the nth term rather than the real and imaginary parts.  Notice that 
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 is a real number, so all our knowledge about convergence of series in R can be brought to bear on the question of whether or not 
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Definition.  A complex series 
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 is said to be absolutely convergent provided the series 
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 is convergent.  If a series is convergent but is not absolutely convergent, we say the series is conditionally convergent.
Theorem 10.  Every absolutely convergent series in C is convergent.

Exercise 11.  Use absolute convergence to show that 
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Theorem 12 (Comparison Test).  Let 
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Theorem 13 (Ratio Test).  Let 
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 be a complex series with non-zero terms such that 
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a) If 
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b) If 
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c) If 
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Exercise 14.  For each series, determine whether or not the series is convergent.
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 where z is an arbitrary complex number

c) 
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 where z is an arbitrary complex number,  z ≠ 1
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