Math 461, Fall 2010

Chapter 1
Algebra of the Complex Plane

As early as 1545, mathematicians struggled to assign meaning to "complex" numbers.  The definition of complex numbers as ordered pairs of real numbers (x, y), or as points of the plane, was obtained over and over again.  What was lacking was an answer to the philosophical question, "What are complex numbers?"  The development of complex analysis, starting in the 19th century, showed that the complex number concept was so useful that no mathematician in his right mind could possibly ignore it.  Once mathematicians were satisfied that complex numbers are useful, the original philosophical question evaporated.
Definition.  A complex number is an ordered pair (x, y) of real numbers.  The binary operations of addition and multiplication of complex numbers are defined as follows:
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1.1.  Exercise.  Consider the complex numbers z1 = (3, 5) and z2 = (2, 7).  Calculate their sum and their product.

1.2.  Theorem.  The set of complex numbers, with the operations defined above, is a field.  That is, the following properties hold:
a) The set of complex numbers is closed with respect to addition and multiplication.

b) Addition and multiplication are commutative.
c) Addition and multiplication are associative.

d) There is an additive identity.

e) There is a multiplicative identity.

f) Each complex number has an additive inverse.

g) Each complex number other than (0, 0) has a multiplicative inverse.

h) Multiplication distributes over addition.

The symbol C is used to denote the field of complex numbers.
1.3.  Exercise.  Show that the mapping 
[image: image3.wmf]f

 which maps a real number x to the complex number 
(x, 0) is an isomorphism from R onto the set of all complex numbers of the form (x, 0).  Remember to show that the operations of addition and multiplication are preserved by the mapping.  
Thus, we can view the real numbers as a subfield of the complex numbers, or the complex numbers as an extension of the real numbers.  This allows us to add a real number and a complex number; for example, 5 + (-2, 7) = (5, 0) + (-2, 7) = (3, 7).  We can also multiply a complex number and a real number; for example, (-2, 7)*5 = (-2, 7)*(5, 0) = (-10 - 0, 0 + 35) = (-10, 35).  
Of course, the notation most commonly used for a complex number is not (x, y) but x + iy (or x + yi), where x and y are real numbers.  This notation dates back to Euler, who used i to denote 
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 in 1777.
Definition.  Let i denote the complex number (0, 1).
1.4.  Theorem.  For all complex numbers (x, y), (x, y) = x + iy.

1.5.  Theorem.  
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1.6.  Exercise.  Use the x + iy notation to derive the definitions for addition and multiplication of complex numbers.
1.7.  Exercise.  Let z = x + iy be any complex number other than 0.  Use the x + iy notation to derive a simple formula for 
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, the multiplicative inverse of z.  
1.8.  Exercise.  Express 
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 in the form x + iy.  
Since ordered pairs (x, y) provide coordinates on the plane R2, we can visualize C as a plane, with the number x + iy corresponding to the point (x, y) in the obvious way.  The identification of the real number x with the complex number (x, 0) then amounts to considering the real numbers as forming the real axis on the complex plane.  The y-axis, drawn perpendicular to the real axis, is called the imaginary axis.
Definition.  Given a complex number z = x + iy, we call x the real part of z and y the imaginary part of z, using the notation x = re(z) and y = im(z).  Note that both of these quantities are real numbers, the coordinates of z in the complex plane.

1.9.  Exercise.  Let 
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.  Find re(z) and im(z).
Definition.  The modulus or absolute value of the complex number z = x + iy is defined by 
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.  It represents the distance from z to 0 in the complex plane.

1.10.  Exercise.  Let z1 = 3 + i, z2 = 1 - 2i.  Locate the complex numbers z1, z2, and z1 + z2 on a drawing of the complex plane.  Then draw and label the line segments whose lengths represent |z1|, |z2|, and |z1 + z2|.
1.11.  Theorem.  Let z be a complex number.  Then z is non-zero if and only if the modulus of z is positive.
1.12.  Theorem (Triangle Inequality).  For all complex numbers z1 and z2, 
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.  Hint:  Since both sides of the desired inequality are non-negative, it is sufficient (and easier) to prove that 
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1.13.  Theorem.  For all complex numbers z1 and z2, 
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.  Moreover, if z2 ≠ 0 then 
[image: image13.wmf]|

|

|

|

|

|

2

1

2

1

z

z

z

z

=

.
Definition.  If z = x + iy, then its complex conjugate is 
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.  Geometrically, the conjugate 
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is obtained by reflecting z in the x-axis.
1.14.  Theorem.  The following properties of the conjugate operation hold for all complex numbers:

1) The conjugate of a sum is the sum of the conjugates.

2) The conjugate of a product is the product of the conjugates.
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5) z is real if and only if 
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The expression x + iy for a complex number is intimately related to Cartesian coordinates 
(x, y) in the plane.  It turns out often to be useful to work instead with polar coordinates (r, θ), which correspond to a point which is distance r from the origin along a ray making an angle θ measured from the positive x-axis in a counter-clockwise direction.  Of course, we will always measure θ in radians and require r to be non-negative.
1.15.  Exercise.  Convert from polar coordinates to Cartesian coordinates, or vice-versa:

1) r = 4, θ = 
[image: image20.wmf]4

5

p


2) r = 0, θ = 
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3) x = 3, y = -3
4) x = 0, y = 5

1.16.  Theorem.  The Cartesian and polar coordinate systems are related by the following equations:
1) 
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Definition.  Let z = x + iy be a complex number, and let r = |z|.  Any value of θ for which 
[image: image25.wmf]q

cos

r

x

=

 and 
[image: image26.wmf]q

sin

r

y

=

 is called an argument of z, which we denote by writing θ = arg(z).  (The article "an" is used because θ is not uniquely determined by z:  if θ is an argument of z then so is θ + 2kπ for any integer k.)  Assuming z is not 0, the unique argument θ of z which falls in the interval 
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 is called the principal argument  of z.  
1.17.  Exercise.  Find the principal argument for each of the following complex numbers.

1) -2 + 2i
2) 
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3) -7

4) -4i
5) i/2
1.18.  Theorem.  Let z = x + iy be any complex number, where r = |z| and θ = arg(z).  Then 
z = x + iy = 
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1.19.  Corollary.  Let z be a non-zero complex number, and θ = arg(z).  Then 
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1.20.  Exercise.  Let z be a non-zero complex number, and θ an argument of z.  Explain, geometrically, how z and 
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 are related (make a helpful diagram).
     The usual ordering (<) on the real numbers enjoys the following properties, among others:

1) If x ≠ 0, then either x > 0 or -x > 0, but not both.

2) If x > 0 and y > 0 then xy > 0 and x + y > 0.

1.21.  Theorem (C cannot be totally ordered).  There is no total ordering of the complex numbers which satisfies both of the above properties.
Because of the preceding theorem, it is not possible to use inequalities analogous to those for real numbers when discussing complex numbers.  Any inequality that occurs in complex analysis must involve only real numbers.  For example, if z is a complex number then "z > 1" makes no sense, but either of "| z | > 1" or "re(z) > 1" is sensible (though they do not mean the same thing).  As a convention, when we write a statement such as "ε > 0," this will automatically imply that ε is a real number.

1.22.  Exercise.  By writing z in the form a + bi, find all solutions z of the following equations.
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1.23.  Exercise.  Let 
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.  Draw a graph of the set S and explain your reasoning.  Are there any special values of 
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 which will give a different graph?
1.24.  Exercise.  Draw the set of all 
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 satisfying each condition:
1) re z > 2

2) 1 < im z < 2

3) 1 < im(z - 1) < 2

4) | z | < 2

5) 1 < | z | < 2

6) | z - 1 | < 1

7) 
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1.25.  Theorem.  Let r and s be positive real numbers, and let θ and α be any real numbers.  If 
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 then arg(zw) = arg(z) + arg(w).

1.26.  De Moivre's Theorem.  For all natural numbers n and all real numbers θ, 
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1.27.  Exercise.  Use De Moivre's Theorem and the substitution 
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 has three distinct complex roots.  Find the three roots and illustrate them in a sketch of the complex plane.

1.28.  Exercise.  Find the two square roots of each of the following complex numbers, and illustrate each pair in a sketch of the complex plane.
1) 
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1.29.  Exercise.  Find the three cube roots of each of the following complex numbers, and illustrate in a sketch of the complex plane.
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1.30.  Exercise.  Let k be a natural number, and define a kth root of z (denoted 
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1.31.  Exercise.  Prove that every non-zero complex number z has exactly two complex square roots, and derive formulae for them.  Also, if 
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