CS 335A: Theory of Computation -- Fall 2013
Instructor: Dr. Barbara Wahl

Email: wahl@hanover.edu

Office: Fine Arts 137 (x 7326) – MWF 11:00 to 11:50, or by appointment

Required Text: Introduction to the Theory of Computation, 2nd Edition, Michael Sipser.
ISBN 0-534-95097-3.

Course handouts & etc. available online at vault.hanover.edu/~wahl

Course description
This course focuses on three traditionally central areas of the theory of computation: automata, computability, and complexity. These areas are linked by the question, what are the fundamental capabilities and limitations of computers? This question goes back to the 1930s when logicians first began to explore the meaning of computation.

What makes some problems computationally hard and others easy? This is the central question of complexity theory. Remarkably, we don’t know the answer to it, though it has been intensively researched for the past several decades. We will explore this fascinating question and some of its ramifications toward the end of the semester.

Certain basic problems cannot be solved at all by computers. In contrast to complexity theory, where the objective is to classify problems as easy or hard, in computability theory the classification is according to solvable or unsolvable. Computability theory introduces several of the key concepts used in complexity theory.

Automata theory deals with the definitions and properties of mathematical models of computation. These models play a role in several applied areas of computer science. One model, called the finite automaton, is used in text processing, compilers, and hardware design. Another model, called the context-free grammar, is used in programming languages and artificial intelligence. We begin our study of the theory of computation with automata theory, since the theories of computability and complexity require a precise (mathematical) definition of a computer.
Prerequisite: CS 225, Algorithmic Analysis.
Course Objectives

Computer Science Major -- Learning Objectives: CS 335 contributes to the following computer science program objectives (rationale is presented in italics):
1a. Educated: Understand existing problems and solutions from a wide range of subfields in computer science. Students explore questions and solutions in the subfield "Theory of Computation."
2a. Skillful: Demonstrate problem solving through the use of computer programming with attention paid to working code, elegance of solution, testing plan, documentation, examination of results, and usability. Students exercise and improve their programming skills in weekly programming labs.
5. Communicator: Can communicate effectively in a variety of field-appropriate mediums, such as public speaking, technical writing, and web publishing. Students improve their communication skills during class discussions and in written homework assignments. Students are expected to present and defend their solutions to the class. Proofs (the mathematical version of "technical writing") are a central feature of the course.

Grading
Attendance/participation: Each day you attend class and contribute to the day’s activities, you will earn an attendance score of at least 3. If you make a notable contribution to the day’s activities, you earn a 4; typically, this involves presenting a correct problem solution at the board, or making an essential contribution to a class discussion.

Excused absences count as 2, unexcused absences as 0. Unexcused absences can easily put you in the ‘F’ range for participation, so please make it a habit to come to class each day!
To request an “excused” absence, send me an email (as soon as possible) to explain the reason for your absence.
Your daily attendance scores will be averaged across the semester to determine your overall attendance grade. An average of 3.0 is approximately equivalent to 85% (‘B’).
Homework: Will be assigned and collected weekly (approximately). I will assess your work for overall quality, correctness (spot-check), and completeness. Please write your solutions in the order that the problems fall in the book. If you need to skip a problem and come back to it, leave a big blank spot for its eventual solution. Start each new section of problems on a new page.
Labs: On a typical Thursday we will meet in the CFA computer lab to work on a lab exercise, starting with week 1. Our semester-long project will be to implement finite automata (DFA, NFA) and Chomksy Normal Form grammars using Java and Eclipse. The labs will help you connect theory with practice and will reinforce your programming skills.
Late Policy: Homework and lab assignments are due at the beginning of class on the due date. Late assignments are accepted, but there is a 1-letter-grade (10 percentage point) reduction per day late. Please start your assignments early so you can finish them on time.
Plagiarism: Submission of someone else's work as your own is plagiarism. It is unacceptable behavior in all situations. Please consult your Hanover College Student Handbook for the consequences of academic dishonesty.
Avoiding Temptation: If you are having a lot of trouble with an assignment, please see me as soon as possible. You should also feel free to discuss problem-solving approaches with your peers. But never copy someone else’s solution, and never let a classmate copy your solution. Sharing your work can be punished the same as copying.

We can all be tempted to act badly when we are in dire straits. The best way to avoid any temptation to plagiarize (in this or in any class) is to start all your assignments as soon as possible, and to ask your instructor for help when needed, the sooner the better.
Grading: Your overall course grade will be determined according to the following standards.
	Class Participation
	 10%
	
	A
	93
	
	C
	73

	Homework
	 15%
	
	A-
	90
	
	C-
	70

	Labs
	 15%
	
	B+
	87
	
	D+
	67

	3 Exams
	 60%
	
	B
	83
	
	D
	63

	 Total
	100%
	
	B-
	80
	
	D-
	60

	
	
	
	C+
	77
	
	F
	0

CS 335A – Fall 2013 – Tentative Schedule
	week of
	day
	assignment
	topic

	Sep 2
	Mon
	
	Introduction

	(week 1)
	Wed
	0.1, 0.2
	Mathematical Terminology

	
	Thu
	
	Lab 1: Alphabet 1

	
	Fri
	0.3, 0.4
	Definitions, Theorems, Proofs

	Sep 9
	Mon
	1.1
	Finite Automata

	(week 2)
	Wed
	1.1
	Finite Automata

	
	Thu
	
	Lab 2: Alphabet 2

	
	Fri
	1.2
	Nondeterminism

	Sep 16
	Mon
	1.2
	Nondeterminism

	(week 3)
	Wed
	1.3
	Regular Expressions

	
	Thu
	
	Lab 3: DFA 1

	
	Fri
	1.3
	Regular Expressions

	Sep 23
	Mon
	1.4
	Nonregular Languages

	(week 4)
	Wed
	1.4
	Nonregular Languages

	
	Thu
	
	Lab 3b: DFA 1 cont.

	
	Fri
	1.4
	Nonregular Languages

	Sep 30
	Mon
	2.1
	Context-free Grammars

	(week 5)
	Wed
	
	Review

	
	Thu
	
	Lab 4: DFA 2

	
	Fri
	
	Exam 1, through Chapter 1

	Oct 7
	Mon
	2.1
	Context-free Grammars

	(week 6)
	Wed
	2.2
	Pushdown Automata

	
	Thu
	
	Lab 5: DFA 3

	
	Fri
	2.3
	Non-context-free Languages

	Oct 14
	Mon
	
	*** Fall Break ***

	(week 7)
	Wed
	2.3
	Non-context-free Languages

	
	Thu
	
	Lab 6: NFA 1

	
	Fri
	3.1
	Turing Machines

	Oct 21
	Mon
	3.2
	Variants of Turing Machines

	(week 8)
	Wed
	3.3
	The Definition of Algorithm

	
	Thu
	
	Lab 7: tba

	
	Fri
	3.3
	The Definition of Algorithm

	Oct 28
	Mon
	4.1
	Decidable Languages

	(week 9)
	Wed
	
	review

	
	Thu
	
	Lab 8: tba

	
	Fri
	
	Exam 2, Chapters 2 & 3

	week of
	day
	assignment
	topic

	Nov 4
	Mon
	4.2
	The Halting Problem

	(week 10)
	Wed
	4.2
	The Halting Problem

	
	Thu
	4.2
	Lab 9: tba

	
	Fri
	5.1
	Undecidable Problems from Language Theory

	Nov 11
	Mon
	5.2
	A Simple Undecidable Problem

	(week 11)
	Wed
	5.3
	Mapping Reducibility

	
	Thu
	
	Lab 10: tba

	
	Fri
	5.3
	Mapping Reducibility

	Nov 18
	Mon
	7.1
	Measuring Complexity

	(week 12)
	Wed
	7.2
	The Class P

	
	Thu
	
	Lab 11: tba

	
	Fri
	7.3
	The Class NP

	Nov 25
	Mon
	7.3
	The Class NP

	(week 13)
	
	
	Thanksgiving Break!

	Dec 2
	Mon
	7.4
	NP-completeness

	(week 14)
	Wed
	
	catch-up day

	
	Thu
	
	review

	
	Fri
	
	review

	exam week
	
	
	Exam 3

5

