CS 335J
1-31-06

Lab 1:  Implementing a DFA class

1. Start Microsoft Visual C++.

2. Create a new project and give it a useful name like “DFA1 myname” (use your last name).

3. Make it a Win32 Console Application.  In the “Win32 Console Application” dialog, choose to create a “Hello, World” application.

4. Execute your “Hello, World” application successfully before continuing.

5. Add a new C/C++ Header File to your project, named DFA.h.  See the following page for the DFA interface code (initial version).  Enter the code in DFA.h and save.

6. Add a new C++ Source File to your project, named DFA.cpp.  See the following page for the DFA implementation code (outline).  Enter the code in DFA.cpp and save.

7. Finish coding the DFA constructor.  Save.

8. Back in Main.cpp, add “#include “DFA.h” toward the top of the file.

9. Edit Main.cpp so it no longer prints “Hello, World.”  Add the necessary code to call the DFA constructor and create a dfa called “dfa1”.  Save.

10. Execute your project and fix syntax errors as needed so the program compiles error-free.  
11. You are finished with lab 1 when the constructor is working correctly.  
WHAT TO TURN IN:  Paper listings of Main.cpp, DFA.h, DFA.cpp.  Disk with executable file so I can test it out.
DUE by Monday 2/6/06.

// DFA.h

// 1-31-06

// Interface for the DFA (deterministic finite automaton) class.

//

// The input alphabet of a DFA is assumed to be {0,1}, the number of states

// is limited to 20, and the length of a string to be tested on the

// DFA is limited to 100 characters.  These values can be changed before

// recompiling if the user needs more states or longer strings.

//

// A DFA is represented internally as a 2D array of integers.

// For any integer (n) from 0 through 19, array position [n][0] indicates

// where to transition (from state n) on "0", array position [n][1]

// indicates where to transition (from state n) on "1", and array

// position [n][2] is a bit to indicate whether or not state n is final.

// State 0 is the starting state.

//

// In addition to the array for storing information about states and

// transitions, a DFA has a counter to indicate the total number of

// states for that machine.

//

#ifndef DFA // prevents header file from being included more than once
#define DFA

class DFA

{

public:


// Public Methods


DFA();
// default constructor queries the user to create the desired DFA


int getNumStates();


int testString(char s[100]);


// Change "100" to desired max string length before compiling


// Input:  a string of up to 100 chars (string of 0s and 1s, or 'e'


// for the epsilon string.


// Output: return 0 if the DFA rejects the string, 1 if it accepts.


// Note:  Print a useful error message to the screen if the input 


// string is invalid, then return 0.

private:


// Private Attributes


int stateArray[20][3];


// array for storing info on states and transitions; change "20" to


// desired max number of states before compiling


int numStates;


// counter to indicate total number of states for the machine

};

#endif

// DFA.cpp

// 1-31-06

// Implementation of the DFA class

#include "DFA.h"

#include <iostream.h>
#include <stdin.h>
using std::cin;

using std::cout;

using std::endl;

DFA::DFA()

// default constructor queries the user and constructs the desired DFA object

{


int n;


numStates=0;


// Determine number of states for the DFA


cout << .. ;
// ask how many states user desires for the DFA


cin >> n;
// read response and store in n


if ...

// if n is a valid number of states, initialize numStates = n.



else ...
// otherwise chide the user and ask again


// Fill in the array which defines the states and transitions


for(int i=0; i<numStates; i++)
// i is the state number


{



for(int j=0; j<2; j++)
// j is the input being read, 0 or 1


{

// Ask user where to transition to (from state i) on 
// reading j




// Record answer in stateArray[i][j]



}



// Ask user whether or not state i is final.  



// Record the proper bit in stateArray[i][2].


} // ends outer for loop

for(i=0; i<numStates; i++)


{



// print the array to the screen so we can know 



// if the constructor is working or not

}

}

int DFA::getNumStates()

{


return numStates;

}

int DFA::testString(char s[100])

{


return 0;
// stub

}

