Math 343

Asymptotic Growth Rate Classes for Algorithm Analysis
4-9-10
An algorithm is a sequence of unambiguous instructions for solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of time.  An input to an algorithm specifies an instance of the problem the algorithm solves.
Several algorithms for solving the same problem may exist.  Different algorithms for the same problem can be based on very different ideas and can solve the problem with dramatically different speeds.  
The most common way to analyze an algorithm's running time is to identify the algorithm's most important operation, its basic operation, which is the operation contributing the most to the total running time, and compute the number of times the basic operation is executed (as a function of the size of the input).  

Efficiency analysis ignores multiplicative constants and focuses on the count's order of growth to within a constant multiple.  Also, for small input sizes most any algorithm will be fast; efficiency analysis concentrates on the growth of the number of computations required as the input size approaches infinity.

Exercise 1:  Review the definition of logb(n) and recall its basic properties (assume b > 0 and 
b ≠ 1):
a) By definition, logb(n) is ______________________________________ .

b) The domain of the function logb(n) is _______________ .

c) logb(1) = ______ and logb(b) = ______ .

d) For which values of the base b is logb(n) an increasing function?  ________ .

e) The log of a product can be rewritten:  logb(xy) = _____________________ .

f) The log of a quotient can be rewritten: logb(x/y) = _____________________ .

g) The log of an exponential expression can be rewritten:  logb(xk) = _______________ .

h) Any two logarithmic functions are proportional (change of base formula):  
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i) If 10x = 2n, then x = _______________ .
Exercise 2:  Fill in function values in the following table.  Approximate any values which are extremely large with an appropriate power of 10.  For example: 
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To compare and rank the asymptotic growth rates for different running-time functions, computer scientists use four notations:  O (big oh), Ω (big omega), Θ (big theta), and o (little oh).  In the following discussion, the functions t(n) and g(n) can be any functions taking non-negative 
real-number values on the domain N.  We imagine t(n) to be some algorithm's running time (usually indicated by its basic operation count, where n is the size of the input), and imagine g(n) to be a simple "benchmark" function with which to compare t(n).
Definition 1:  t(n) is in O(g(n)) provided t(n) is bounded above by some constant multiple of g(n) for all values of n which are sufficiently large.  More formally, 
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Exercise 3:  Use definition 1 to prove that 100n + 5 is in O(n2).  Illustrate with a graph.
Exercise 4:  Use definition 1 to prove that 10n2 + 100n + 1000 is in O(n2).  Illustrate with a graph.
Theorem 1:  If 
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Exercise 5:  Redo exercises 3 and 4, using theorem 1 instead of definition 1.

Definition 2:  t(n) is in Ω(g(n)) provided t(n) is bounded below by some constant multiple of g(n) for all values of n which are sufficiently large.  More formally, 
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Exercise 6:  Use definition 2 to prove that .01n is in Ω(
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).  Illustrate with a graph.

Exercise 7:  Use definition 2 to prove that .001n2 is in Ω(n).  Illustrate with a graph.

Theorem 2:  t(n) is in O(g(n)) if and only if g(n) is in Ω(t(n)).
Exercise 8:  Prove Theorem 2.

Definition 3:  t(n) is in Θ(g(n)) provided t(n) is bounded below by some constant multiple c1 of g(n), and is bounded above by some constant multiple c2 of g(n), for all values of n which are sufficiently large.  More formally, 
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[Big theta captures the relationship, "t(n) is in the same growth rate class as g(n)."]
Theorem 3:  If 
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 is a positive real number, then 
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Exercise 9:  Prove that 
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Exercise 10:  Prove that 
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Exercise 11:  Prove that 
[image: image16.wmf]))

(

(log

))

(

(log

2

2

n

n

floor

Q

Î


Exercise 12:  Prove:  If a > 1 and b > 1, then 
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Definition 4:  t(n) is in o(g(n)) provided 
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.  [Little oh captures the relationship, "t(n) is in a slower growth rate class than g(n)."]
Exercise 13:  Prove that 
[image: image19.wmf])

(

log

2

n

o

n

Î

.
Exercise 14:  Which of the following is true?  Prove your answer.  Hint:  Use the fact in Exercise 13 to help.

a)  
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b)  
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Exercise 15:  Find an example of an increasing function f of type N → 
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Exercise 16:  Assume that f and g are polynomial functions of type N → 
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(a)  If f and g have the same positive degree, then 
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(b)  If f  has lower degree than g, then 
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