Multivariate Regression

Omitted variable bias

- What happens when we omit an important variable?
- Need to conjecture regarding the relationship between the omitted variable and included x and y variables

- **The Table**

<table>
<thead>
<tr>
<th>Corr(omitted variable, x)</th>
<th>positive</th>
<th>negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corr(omitted variable, y)</td>
<td>positive</td>
<td>upward bias</td>
</tr>
<tr>
<td>negative</td>
<td>downward bias</td>
<td>upward bias</td>
</tr>
</tbody>
</table>

- **Upward bias:**
 - Estimate is *higher* than the true parameter: $\beta < \hat{\beta}$

- **Downward bias:**
 - Estimate is *lower* than the true parameter: $\hat{\beta} < \beta$
Example: Effect of class attendance on grades

Population follows:

\[
\text{final} = \beta_0 + \beta_1 \text{attend} + \beta_2 \text{study} + u
\]

We instead forget about \textit{study} and estimate:

\[
\hat{\text{final}} = \hat{\beta}_0 + \hat{\beta}_1 \text{attend}
\]

Suppose we estimate \(\hat{\beta}_1 > 0\), and conclude that attendance increases your grade \((\beta_1 > 0)\). Is this right?

Positive correlation between \textit{study} and \textit{final}

Positive correlation between \textit{study} and \textit{attend}

\(\hat{\beta}_1\) suffers from an upward bias, \(\beta_1 < \hat{\beta}_1\)

Intuition

\(\hat{\beta}_1 > 0\) suggests that higher attendance improves your grade

However, students who attend class often tend to study more

Thus, \textit{attend} may actually be accounting for the effects of studying, and not attendance.

Overall, given \(\beta_1 < \hat{\beta}_1\), the result \(\hat{\beta}_1 > 0\) is insufficient to guarantee that \(\beta_1 > 0\).
Multivariate Regression

Omitted variable bias - Examples

Example: Effect of drugs on crime

- Population follows:

\[
\text{crime} = \beta_0 + \beta_1 \text{educ} + \beta_2 \text{drugs} + u
\]

- We instead forget about drugs and estimate:

\[
\hat{\text{crime}} = \hat{\beta}_0 + \hat{\beta}_1 \text{educ}
\]

- Suppose we estimate \(\hat{\beta}_1 < 0 \), and conclude education reduces your likelihood of committing a crime (\(\beta_1 < 0 \))

- Positive correlation between drugs and crime

- Negative correlation between drugs and educ

- \(\hat{\beta}_1 \) suffers from an downward bias: \(\hat{\beta}_1 < \beta_1 \)

Multivariate Regression

Omitted variable bias - Examples

- **Intuition**
 - \(\hat{\beta}_1 < 0 \) suggests that education reduces your likelihood of committing a crime
 - However, people who go to school are less likely to abuse drugs
 - Thus, educ may actually be accounting for the propensity of drug use, not the effects of education

- Overall, given \(\hat{\beta}_1 < \beta_1 \), the result \(\hat{\beta}_1 < 0 \) is *insufficient* to guarantee that \(\beta_1 < 0 \).